Practical informations

Online application: www.biohealth-computing.eu

Within the BioHealth Computing Programme, three types of Erasmus Mundus scholarships are available for Non-European applicants, European applicants, Scholars and Academics.Industrial Scholarships will be assigned by BioHealth Computing Consortium, to applicants whose background and interest match closely with the priorities of the Partner Industries.

CONTACT INFORMATION

Prof. Philippe SABATIER
MS Programme’s Coordinator
Faculty of Medicine-Pharmacy, University Joseph Fourier Grenoble.
philippe.sabatier@biohealth-computing.eu

Prof. Emmanuel DROUET
PhD Programme’s Coordinator
Faculty of Medicine-Pharmacy, University Joseph Fourier Grenoble.
emmanuel.drouet@biohealth-computing.eu

Admission / Coordination Department for International Affairs,
University Joseph Fourier Grenoble
office@biohealth-computing.eu

ASSOCIATED PARTNERS

Institut Pasteur-Korea (Korea), Institut Pasteur of Shanghai (China),
University of Bristol (United Kingdom), University of Birmingham (United Kingdom),
Kibernet University (Turkey), National University of Science and Technology of Pakistan (Pakistan),
University of Shanghai (Turkey), wedding sup (France), EDF Grenoble (France), Parc Scientifique de Bordeaux (Spain), Barriat Sup (Spain), Barriat Park (France),
Swiss Institute of BioInformatics (Switzerland), University Hospitals of Grenoble (France), of Barcelona (Spain), of Chaig Neap Re (Honam), of Dongguk (Korea) and of Tongji (China), Sewl Firhan (France),
Inmarion (France), Metal France, Solar (France), Novadiscovery (France), Bioindustry Park (Italy),
BioCat (Spain), BioHealth Computing Alliance brings together 10 leading universities and 25 associate partners linking academic institutions, technology transfer centers, university hospitals and life science industries. This unique network of actors distributed over 13 centers located in Europe and Asia brings together 150 Principal Investigators and combines a great diversity of relevant scientific disciplines and know-how to develop research and training in the field of clinical and life sciences.

This project has been funded with support from the European Commission.

www.biohealth-computing.eu
Growing barriers between clinical and basic research, along with the ever increasing complexities involved in conducting health research, are making it more difficult to translate new knowledge from the bench to the bedside and back to the bench again. To tackle the problem of complexity is one of the greatest challenges of the BioHealth Computing Alliance.

The BioHealth Computing Alliance strives at forming a new generation of professionals that will be able to exploit and thereby stimulate the creativity and skills of healthy and diseased cells and tissues to create new knowledge that will be of benefit to mankind. It will do so by means of a structured, interdisciplinary, and integrated approach to health and disease research.

In order to build a sustainable and competitive bioinformatics industry in Europe, it will be needed to train a new generation of computer scientists, mathematicians and molecular biologists who will be able to exploit (and further develop) cutting-edge technologies in Systems Biology and to translate research into applications.

The BioHealth Computing Alliance aims at forming a new network of actors distributed over at least two universities of the Consortium, will be awarded a "PhD degree" in Systems Biology (or equivalent), signed by all the Partner Universities.

The main learning output of this Master Programme is the students’ ability to work on a joint research project and to prepare a research paper that should be submitted to a scientific conference or journal. The main skills students will acquire during the Master Programme are:

- To develop research projects in a multidisciplinary environment and to interact effectively with other researchers from different disciplines.
- To formulate, analyze and present scientific results.
- To write scientific papers and give presentations.
- To work in teams and solve problems in a systematic manner.
- To analyze complex systems and data.
- To design and implement computational models.
- To use computer software and algorithms to analyze biological data.
- To understand and apply the principles of bioinformatics.

The BioHealth Computing PhD works, at least, in one thesis, one research project, and one seminar. The students’ thesis is expected to result in at least 100 pages of scientific work. The research project will focus on applied research results from academia and new medical or pharmaceutical technologies developed by companies in the fields of Systems Biology.

The BioHealth Computing PhD brings a number of important advantages to the candidate for his/her future career:

- Opportunity to exploit software sold to, and used by the companies in the first group.
- Opportunity to work in a leading laboratory, allowing them to apply their knowledge in a leading laboratory, including preventive medicine, personalized and preventive medicine.

The innovative approach of BioHealth Computing program ears, new significant potential in engineering design and strategy, influencing in Clinical and life industries. The tools, techniques, and approaches prepared by the Graduate School are becoming standard in research labs and R&D departments. Many organizations are going to put the core concept of Systems Biology properly into practice by informing their research through the transdisciplinary cycle between experimental and modeling. From worldwide - public and private - Systems Biology’s centers are looking for clinicians, pharmacists, veterinarians, biologists, engineers, chemists, mathematicians, and computer programs.

Clinical and Life Sciences industries: selling trained people can be divided into two broad categories: those that employ System Biology’s methodology to make products, and those that create tools, which are sold and used by the company in the first group.

- Large companies such as drug development firms, pharmaceutical industries, and economical producers belonging to the first category, need people driven by biology questions who want to take computational models and tools for solving the complex biological systems.
- Small and medium enterprises (SMEs) in the biology sector for example, belonging to the latter category, will be interested in less large technological developments, such as software tools designed for small and medium enterprises to develop software solutions for companies to handle their big amount of data effectively.

Job opportunities

Strong relationships with industry to boost your career prospects

Moving towards a predictive, personalized and preventive medicine, with modeling

Presentation

The BioHealth Computing PhD is a program that aims to prepare students for creative careers in competition, making them ready for the Biomedical Research and Industry. This program is designed to give students the opportunity to develop the core skills needed for a successful career in Systems Biology.

The BioHealth Computing PhD works, at least, in one thesis, one research project, and one seminar. The students’ thesis is expected to result in at least 100 pages of scientific work. The research project will focus on applied research results from academia and new medical or pharmaceutical technologies developed by companies in the fields of Systems Biology.

The innovative approach of BioHealth Computing program ears, new significant potential in engineering design and strategy, influencing in Clinical and life industries. The tools, techniques, and approaches prepared by the Graduate School are becoming standard in research labs and R&D departments. Many organizations are going to put the core concept of Systems Biology properly into practice by informing their research through the transdisciplinary cycle between experimental and modeling. From worldwide - public and private - Systems Biology’s centers are looking for clinicians, pharmacists, veterinarians, biologists, engineers, chemists, mathematicians, and computer programs.

Clinical and Life Sciences industries: selling trained people can be divided into two broad categories: those that employ System Biology’s methodology to make products, and those that create tools, which are sold and used by the company in the first group.

- Large companies such as drug development firms, pharmaceutical industries, and economical producers belonging to the first category, need people driven by biology questions who want to take computational models and tools for solving the complex biological systems.
- Small and medium enterprises (SMEs) in the biology sector for example, belonging to the latter category, will be interested in less large technological developments, such as software tools designed for small and medium enterprises to develop software solutions for companies to handle their big amount of data effectively.

Job opportunities

Strong relationships with industry to boost your career prospects

Moving towards a predictive, personalized and preventive medicine, with modeling

Presentation

The BioHealth Computing PhD is a program that aims to prepare students for creative careers in competition, making them ready for the Biomedical Research and Industry. This program is designed to give students the opportunity to develop the core skills needed for a successful career in Systems Biology.

The innovative approach of BioHealth Computing program ears, new significant potential in engineering design and strategy, influencing in Clinical and life industries. The tools, techniques, and approaches prepared by the Graduate School are becoming standard in research labs and R&D departments. Many organizations are going to put the core concept of Systems Biology properly into practice by informing their research through the transdisciplinary cycle between experimental and modeling. From worldwide - public and private - Systems Biology’s centers are looking for clinicians, pharmacists, veterinarians, biologists, engineers, chemists, mathematicians, and computer programs.

Clinical and Life Sciences industries: selling trained people can be divided into two broad categories: those that employ System Biology’s methodology to make products, and those that create tools, which are sold and used by the company in the first group.

- Large companies such as drug development firms, pharmaceutical industries, and economical producers belonging to the first category, need people driven by biology questions who want to take computational models and tools for solving the complex biological systems.
- Small and medium enterprises (SMEs) in the biology sector for example, belonging to the latter category, will be interested in less large technological developments, such as software tools designed for small and medium enterprises to develop software solutions for companies to handle their big amount of data effectively.